Category Archives: Integrals

N.L.R. Rojas and E.A. Galapon, “Terminating Poincare asymptotic expansion of the Hankel transform of entire exponential type functions,” arXiv:2409.10948

By | September 19, 2024

We perform an asymptotic evaluation of the Hankel transform, , for arbitrarily large of an entire exponential type function, , of type by shifting the contour of integration in the complex plane. Under the situation that has an odd parity with respect to and the condition that the asymptotic parameter is greater than the type… Read More »

The analytic principal value by way of the Cauchy-Plemelj-Fox theorem

By | May 5, 2016

In the publication found here or here, I introduced the concept of analytic principal value (APV) to allow meaningful assignment of values to the class of divergent integrals given by (1)   with . The basic assumption in the definition of the APV is that the function has a complex extension , obtained by replacing… Read More »

I think this one is beautiful

By | September 14, 2015

Beauty is one of those abstractions that is difficult to define or quantify. But we know it when we see one. I arrived at the following integral trying to make sense of some divergent integrals: (1)   There is manifest symmetry in the integrand and the value of the integral involves the ratio of two… Read More »