Skip to content
2024
- Moyal deformation of the classical arrival time
Dean Alvin L. Pablico and Eric A. Galapon
Journal of Mathematical Physics 65, 102104 (2024).
- The role of conjugacy in the dynamics of time of arrival operators
Dean Alvin L. Pablico, John Jaykel P. Magadan, Carl Anthony L. Arguelles and Eric A. Galapon
Physics Letters A 523, 129778 (2024).
- Partial and full tunneling processes across potential barriers
Philip Caesaar M. Flores, Dean Alvin L. Pablico and Eric A. Galapon
EuroPhysics Letters (2024).
2023
- Continuation of the Stieltjes series to the large regime by finite-part integration
Christian D. Tica and Eric A. Galapon
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 479, 20230098 (2023)
- Quantized relativistic time-of-arrival operators for spin-0 particles and the quantum tunneling time problem
Philip Caesar M. Flores and Eric A. Galapon
Europhysics Journal Plus 138, 375 (2023).
- Quantum corrections to the Weyl quantization of the classical time of arrival
Dean Alvin Pablico and Eric A. Galapon
Europhysics Journal Plus 138, 153 (2023). https://doi.org/10.1140/epjp/s13360-023-03774-z (2023)
- Regularized limit, analytic continuation and finite-part integration
Eric A. Galapon
Analysis and Applications 21, 841-900 (2023).
- Instantaneous tunneling of relativistic massive spin-0 particles
Philip Caesar Flores and Eric A. Galapon
Europhysics Letters, 141, 10001 (2023)
2022
- Conjugates to One Particle Hamiltonians in 1-Dimension in Differential Form
Ralph Adrian E. Farrales, Herbert B. Domingo and Eric A. Galapon
The European Physical Journal Plus, 137:830 (2022)
- Relativistic free-motion time-of-arrival operator for massive spin-0 particles with positive energy
Philip Caesar Flores and Eric A. Galapon
Physical Review A, 105, 062208 (2022)
2021
- Finite-part integration in the presence of competing singularities: Transformation equations for the hypergeometric functions arising from finite-part integration
Lloyd L. Villanueva and Eric A. Galapon
Journal of Mathematical Physics, 62, 043505 (2021).
2020
- Quantum traversal time across a potential well
Dean Alvin L. Pablico and Eric A. Galapon
Physical Review A 101, 022103 (2020).
2019
- Exact decoherence brought by one internal degree of freedom: von Neumann equation approach and examples
J.P.A. Besagas, J.C.L. Lima and E.A. Galapon
International Journal of Modern Physics B
Volume 33, 1950285 (2019)
- Quantum free fall motion and quantum violation of weak equivalence principle
P.C.M. Flores and E.A. Galapon
Physical Review A
Volume 99, 042113 (2019).
- Finite-part integration of the generalized Stieltjes transform and its dominant asymptotic behavior for small values of the parameter. II. Non-integer orders
C.D. Tica and E.A. Galapon
Journal of Mathematical Physics
Volume 60, 013502 (2019).
2018
- Quantization of the classical time of arrival and their dynamics
E.A. Galapon and J. Magadan
Annals of Physics
Volume 397: 278-302 (2018).
- Barrier-traversal-time operator and the time-energy uncertainty relation
D. Sombillo and E.A. Galapon
Physical Review A
Volume 90: 032115 (2018).
- Finite-part integration of the generalized Stieltjes transform and its dominant asymptotic behavior for small values of the parameter. I. Integer orders
C.D. Tica and E.A. Galapon
Journal of Mathematical Physics
Volume 59: 023509 (2018).
2017
- The problem of missing terms in term by term integration involving divergent integrals
E.A. Galapon
Proceedings of the Royal Society of London A
Volume 473: 20160567 (2017).
- Effect of Spin Dimensionality in the Fidelity of Spin Chain
A.G.B. Dumigpe and E.A. Galapon
Science Diliman
Volume 29:1, 53-65 (2017).
2016
- Synchronizing quantum and classical clocks made of quantum particles
P.C.M. Flores, R.C.F. Caballar, E.A. Galapon
Physical Review A
Volume 94 (2016) 032123.
- Mixtures of maximally entangled pure states
M.M. Flores and E.A. Galapon
Annals of Physics
Volume 372 (2016) 297–308.
- Internal one degree of freedom is sufficient to induce exact decoherence
E.A. Galapon
Europhysics Letters
Volume 113 (2016) 60007.
- The Cauchy principal value and the Hadamard finite part integral as values of absolutely convergent integrals
E.A. Galapon
Journal of Mathematical Physics
Volume 57, 033502 (2016).
- Particle detection and non-detection in a quantum time of arrival measurement
D. Sombillo and E.A. Galapon
Annals of Physics
Volume 364, Pages 261–273 (2016).
2015
- A Relativistic One-Particle Time of Arrival Operator for a Free Spin-1/2 Particle in (1+1) Dimensions
J. Bunao and E.A. Galapon
Annals of Physics
Vol. 356, Pages 369–382 (2015).
- Generalized Weyl transform for operator ordering: Polynomial functions in phase space.
H.B. Domingo and E.A. Galapon
Journal of Mathematical Physics
Vol. 56, 022104 (2015).
- Two qubit entanglement preservation through the addition of qubits.
M.M. Flores and E.A. Galapon
Annals of Physics
Vol. 354, March 2015, Pages 21–30.
- A one-particle time of arrival operator for a free relativistic spin-0 charged particle in (1+1) dimensions.
J. Bunao and E.A. Galapon
Annals of Physics
Vol. 353, February 2015, Pages 83–106.
2014
- The Bender-Dunne basis operators as Hilbert space operators
J. Bunao and E.A. Galapon
Journal of Mathematical Physics
Vol. 55, 022102 (2014).
- Exactification of the Poincaré asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales
E.A. Galapon and K.L.M. Martinez
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Vol. 470, 20130529 (2014).
- Quantum traversal time through a double barrier
D. Sombillo and E.A. Galapon
Physical Review A
Vol. 90, 032115 (2014).
2012
- Only Above Barrier Energy Components Contribute to Barrier Traversal Time
E.A. Galapon
Physical Review Letters
Vol. 108, 170402 (2012).
- Quantum time of arrival Goursat problem
D. Sombillo and E.A. Galpon
Journal of Mathematical Physics
Vol. 53, 043702 (2012).
2010
- Generalized crossing states in the interacting case: The uniform gravitational field
A.D. Villanueva and E.A. Galapon
Physical Review A
Vol. 82, 052117(2010).
- Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries.
R.C.F Caballar, L.R. Ocampo, and E.A. Galapon
Physical Review A
Vol. 81, 062105 (2010).
2009
- Post Pauli’s Theorem Emerging Perspective on Time in Quantum Mechanics.
E.A. Galapon
Time in Quantum Mechanics Vol. 2
Vol. 789, 25-63 (2009).
- Theory of quantum arrival and spatial wave function collapse on the appearance of particle
E.A. Galapon
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Vol. 465, 71 (2009).
- Characterizing multiple solutions to the time–energy canonical commutation relation via quantum dynamics
R.C.F. Caballar
Physics Letters A
Vol. Volume 373, 2660–2666 (2009).
- Delta-convergent sequences that vanish at the support of the limit Dirac delta function
E.A. Galapon
Journal of Physics A: Mathematical and Theoretical
Vol. 42, 175201 (2009).
- Quantum wave-packet size effects on neutron time-of-flight spectroscopy
E.A. Galapon
Physical Review A
Vol. 80, 030102(R)(2009).
- Comment on ‘Almost-periodic time observables for bound quantum systems’
E.A. Galapon
Journal of Physics A: Theoretical and Mathematical
Vol. 42, 018001 (2009).
2008
- Quantum first time-of-arrival operators
E.A. Galapon and A. Villanueva
Journal of Physics A: Mathematical and Theoreical
Vol. 41, 455302 (2008).
- Application of Clenshaw-Curtis method in confined time of arrival operator eigenvalue problem
R. Vitancol and E.A. Galapon
Internatinal Journal of Modern Physics C
Vol. 19, 821 (2008).
- Confined Quantum Time of Arrivals
E.A. Galapon, R.C.F. Caballar, and R. Bahague
Physical Review Letters
Vol. 93, 180406 (2004); Erratum Phys. Rev. Lett. 101, 169901 (2008).
2006
- Theory of quantum first time of arrival via spatial confinement I: Confined time of arrival operators for continuous potentials
E.A. Galapon
International Journal of Modern Physics A
Vol. 21, 6351-6381 (2006).
- What could have we been missing while Pauli’s theorem was in force?
E.A. Galapon
Time and Matter eds. I. Bigi and M. Faessler
World Scientific, p 133-144 (2006).
2005
- Confined quantum time of arrival for the vanishing potential.
E.A. Galapon, R.C.F. Caballar, and R. Bahague
Physical Review A
Vol. 72, 062107 (2005); Erratum Phys. Rev. A 78, 049902 (2008).
- Transition from discrete to continuous time-of-arrival distribution for a quantum particle.
E.A. Galapon, F. Delgado, J.G. Muga, and I.L. Egusquiza
Physical Review A
Vol. 72, 042107 (2005).
2004
- Shouldn’t there be an antithesis to quantization?
E.A. Galapon
Journal of Mathematical Physics
Vol. 45, 3180 (2004); Erratum J. Math. Phys. 49, 099902 (2008).
2002
- Self–adjoint time operator is the rule for discrete semi–bounded Hamiltonians.
E.A. Galapon
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Vol. 458 2671-2689 (2002).
- Pauli’s theorem and quantum canonical pairs: the consistency of a bounded, self–adjoint time operator canonically conjugate to a Hamiltonian with non–empty point spectrum
E.A. Galapon
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Vol. 458, 451-472 (2002).
2001
- Quantum-classical correspondence of dynamical observables, quantization, and the time of arrival correspondence problem
E.A. Galapon
Optics and Specstroscopy
Vol. 91, Issue 3, pp 399-405 (2001).