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Abstract

The standard time-of-arrival distribution cannot reproduce both the tempo-
ral and the spatial profile of the modulus squared of the time-evolved wave
function for an arbitrary initial state. In particular, the time-of-arrival dis-
tribution gives a non-vanishing probability even if the wave function is zero
at a given point for all values of time. This poses a problem in the standard
formulation of quantum mechanics where one quantizes a classical observable
and uses its spectral resolution to calculate the corresponding distribution. In
this work, we show that the modulus square of the time-evolved wave function
is in fact contained in one of the degenerate eigenfunctions of the quantized
time-of-arrival operator. This generalizes our understanding of quantum ar-
rival phenomenon where particle detection is not a necessary requirement,
thereby providing a direct link between time-of-arrival quantization and the
outcomes of the two-slit experiment.

Keywords: Quantum Mechanics, Quantum time of arrival, Wave function
collapse, Two-slit experiment

1. Introduction

Time of arrival (TOA) has always been associated with particle appear-
ance [1]. This is the reason why attempts to construct a quantum TOA dis-
tribution uses particle detection as its primary assumption [2, 3, 4, 5, 6, 7].
Now, the probability of finding a particle in the neighborhood of X at an
instant of time t is already encapsulated in the position density distribution
|ψ(X, t)|2. If particle detection is indeed necessary for quantum arrival, then
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the TOA distribution should resemble both the temporal and spatial pro-
file of the time-evolved position density. Following the standard formulation
of quantum mechanics, a TOA operator can be obtained by quantizing the
classical TOA. The spectral resolution of the quantum TOA operator can
then be used to generate the TOA distribution for a given initial state. Such
distribution is often referred to as the standard TOA distribution [25, 26].
However, the standard TOA distribution fails to give the correct temporal
and spatial profile of the time-evolved position density for an arbitrary ini-
tial state. This is due to the suppression of the interference arising from the
positive and negative momentum components of the initial state [9, 10]. We
are now confronted with the following problems: Is the standard formula-
tion (i.e. quantization of classical observable followed by spectral analysis)
wrong? If not, then what does the quantized TOA operator actually mea-
sures? Is it still possible to consistently extract the time-evolved position
distribution from the standard TOA distribution? This paper will address
these questions.

In this work, we will show that the position distribution is indeed con-
tained in the standard quantum TOA distribution and that the quantum ar-
rival has a broader meaning than the classical particle detection phenomenon.
We will first examine a specific case when the standard TOA fails to give
the correct spatial and temporal profile of the time-evolved position distribu-
tion. Using the properties of the confined time-of-arrival (CTOA) operator,
we were able to isolate the term in the unconfined standard TOA distribution
that correspond to particle appearance. In the end, we will learn that the
quantization of the classical TOA give rise to a quantum phenomenon which
is at the very core of quantum mechanics, i.e. the two-slit experiment.

In [12], one of us proposed that particle appearance is a consequence
of TOA measurement. That is, the initial wave function of a particle col-
lapses into one of the confined time of arrival (CTOA) operator eigenfunctions
right after the preparation and evolve according to the Schrödinger equation
[15, 16]. At the time equal to the CTOA eigenvalue, the evolving eigenfunc-
tion becomes a function with a singular support at the arrival point. The
instant when the wave function has its minimum position uncertainty is in-
terpreted as particle appearance in [12]. The proposed mechanism suggests
that a quantum particle may be materialized via smooth unitary evolution in
contrast to the abrupt collapse upon measurement. One can therefore infer
a strong connection between the time-evolved position density and the TOA
distributions. However, such connection was established only in the theory of
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CTOA operator, which is still problematic in terms of operational interpre-
tation [17]. In this paper, we intend to reconcile the time-evolved position
and the more established standard TOA distributions in the fundamental
level, i.e. without any reference to a detector. We will do this by exploiting
the known properties of the CTOA operator such as the two distinct unitary
arrivals.

This work is organized as follows. First, we show that the particle appear-
ance interpretation can be extended to the unconfined case in section 2. In
section 3, we compare the TOA distribution with the time-evolved position
density for different initial states. This is followed by describing the relevant
features of the CTOA theory in section 4 and using those features to extend
the interpretation of the standard TOA in section 5. Then, we relate the
reinterpreted TOA measurement with the two-slit experiment in section 6.
Finally, we give our conclusion in section 8.

2. The Standard TOA Distribution

A TOA operator can be constructed for a non interacting case such that
it satisfies the required canonical commutation relation with the free Hamil-
tonian. The standard TOA operator is given by T̂ = −µ[(q̂−X)p̂−1+p̂−1(q̂−
X)]/2 , where X is the arrival point, µ is the mass of the particle, q̂ is the
position operator and p̂ is the momentum operator [18]. The operator T̂ ,
though not self adjoint, is maximally symmetric and therefore can still be
used to generate the desired distribution. The spectral resolution of T̂ is
obtained by solving the eigenvalue problem T̂ |τ 〉 = τ |τ 〉, where τ is the
TOA eigenvalue and |τ 〉 is the corresponding eigenstate. The solution to the
eigenvalue problem is easily facilitated in momentum representation, i.e.

− iµ~

(

1

p

∂

∂p
− 1

p2
+ i

X

~p

)

〈p| τ〉 = τ 〈p| τ〉 . (1)
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where
〈

p| τX±
〉

are the degenerate eigenfunctions of T̂ with eigenvalue τ and
Θ(p) is the Heaviside function [8]. Given an initial state |ψ0 〉, one can con-
struct the TOA density distribution via:
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The first and second terms are associated with the particles moving right-
wards and leftwards, respectively.
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Figure 1: Time evolution of the standard quantum TOA operator eigenfunction distribu-

tion
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for decreasing ǫ. Lighter regions correspond to high probability density

value while darker regions correspond to low density value. The arrival point is set to
X = 0 and the time eigenvalue at τ = 5. Similar dynamical behavior is obtained for
∣

∣

〈

q| τX− (t)
〉
∣

∣

2
(not shown).

Properties of the standard TOA operator eigenfunctions are explored in
details in [23]. One important feature of the TOA eigenfunction is its unitary
evolution. This is governed by the time development operator given by:
ÛK
t = e−ip̂

2t/2µ~. To probe the dynamics of the standard TOA eigenfunctions,
we evaluate the corresponding amplitude

〈

q| τX+ (t)
〉

by integrating this in
momentum space. Anticipating that the integral is divergent, we introduce
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a converging factor e−ǫp
2

such that

〈q |UK
t

∣
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〉
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ǫ→0

∫

+∞

−∞

dp 〈q| p〉 e−ip2t/2µ~
〈
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2
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|p|
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exp

[

(X − q)p

i~
+

(t− τ)p2

2iµ~

]

e−ǫp
2

.

(4)

Notice that when we set the position q to be at X , the integral will become
divergent as ǫ → 0 only when t = τ . If we interpret a wave function with
singular support at the arrival point q = X to be a particle’s appearance,
then the time when this happens correspond to the particle’s first arrival time.
This means that the eigenvalue time τ of the standard TOA operator is the
first time of arrival of a particle that is initially prepared in the corresponding
eigenfunction. The dynamics are explcitly shown in Fig.1 for decreasing ǫ
where the position distribution approaches a singular value at q = X only in
time t = τ .

It turns out that the TOA operator eigenfunctions exhibit a particle-
like collapse, i.e. they unitarily evolve into a wave function with singular
support at time equal to the TOA eigenvalue. Thus, the interpretation that
the appearance of particle is due to the TOA measurement holds for the
unconfined case. Consequently, this means that we should be able to relate
the particle’s position probability density to the quantum TOA distribution.

3. Relating the quantum TOA distribution with the position dis-

tribution

The distributions Πψ0
(X, τ) and |ψ(q, t)|2 are not equivalent to each other

in a sense that they are answers to two different questions. In particular, the
probability of finding the particle in a small interval dq at a given point q at
an instant of time t is P (q, dq; t) = |ψ(q, t)|2 dq, while the probability that
a particle will arrive at a point X in a small time interval dτ at time τ is
P̄ (τ, dτ ;X) = Πψ0

(X, τ)dτ . The former is a probability density in space at
fixed instant of time t while the latter is a density in time evaluated at a fixed
point in space X . These distributions are complementary to each other, i.e.
one can be used to addressed what the other distribution cannot. Also, these
distributions should be consistent with each other, i.e. if |ψ(q, t)|2 = 0 at
some point q = X for all time t, then we expect that Πψ0

(X, τ) = 0.
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3.1. Initial state with compact support in the half momentum line

The relationship between the position density and the TOA distribution
is straightforward for initial state having a compact support in the half mo-
mentum line. These are shown in Fig.2 and 3. In Fig.2, where the initial
state is a single-peak Gaussian function with positive momentum support,
both the temporal and spatial profile of the TOA distribution agrees with the
time-evolved position density. We get the same observation in Fig.3 where
the initial state is a linear combination of two Gaussian, both of which have
positive momentum support.
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Figure 2: Comparison of |ψ(q, t)|2 (square) with |J(X, τ)| (triangle) and Πψ0
(X, τ) (cross)

for fixed position (a) and fixed time (b). The initial state is given by ψ0(p) = ψ+(p) =

Ne−(p−p0)
2/(4σ2

p
) where N is a normalization constant and p0 > 0.

The corresponding amplitudes are related via:

〈

τX+
∣

∣ψ0

〉

=

∫
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dp
eipX/~√
2π~

√

|p|
µ
e−ip

2τ/2µ~ψ0(p)

= 〈X | Ω̂ÛK
τ |ψ0 〉

(5)

where we used 〈X| p〉 = eipX/~/
√
2π~ and introduced the operator Ω̂ =

√

|p̂| /µ. One will recognize that the vector ÛK
τ |ψ0 〉 is the free evolving

state |ψ(τ)〉. Inserting the identity resolution of the position eigenstates in
(5) we obtain the desired relationship between the two amplitudes

〈

τX+
∣

∣ψ0

〉

=

∫

+∞

−∞

dq 〈X | Ω̂ |q 〉ψ(q, τ). (6)
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Figure 3: Contour plots of unnormalized distributions Πψ0
(X → q, τ) (a) and

|ψ(q, t→ τ)|2 (b) for initial state ψ0(p) = N [ψ1+(p) + ψ2+(p)] where ψn+(p) ∝
e−(p−pn)

2/(4σ2

p
) with p2 > p1 > 0. The distribution |J(X → q, τ)| (not shown) is simi-

lar to (a). The profiles of the three distributions are shown in (c) for fixed position slice
and in (d) for fixed time slice.

The left side of (6) contains the amplitude of the standard TOA distribu-
tion while the right side contains the amplitude of the time evolved position
distribution. This relationship is reminiscent of the crossing states discussed
in [13, 14]. We can also invert the process by expanding the amplitude
〈q | ÛK

t |ψ0 〉 in terms of the identity resolution of the TOA eigenstates, i.e.

〈q|ψ(t)〉 =
∑

σ=±

∫

+∞

−∞

dτXσ 〈q | ÛK
t

∣

∣τXσ
〉 〈

τXσ
∣

∣ψ0

〉

. (7)

Note that only the σ = + will contribute to the expansion due to the re-
striction that we put on |ψ0 〉, i.e. 〈p|ψ0〉 has a compact support only in the
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positive momentum line.

3.2. Initial state with positive and negative momentum components

So far, the relationships that we have established are only valid when
the initial state has a compact support in the half momentum line. Let us
consider a more general case, i.e. when the initial state has both negative
and positive momentum components.
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Figure 4: The time-evolved position density distribution (a) and the position-scanned
standard TOA distribution (b). The initial state used is the antisymmetric ψ0(p) =

N(ψ+(p)− ψ−(p)), where ψ±(p) = e−(p±p0)
2/(4σ2

p
) and N is a normalization constant.

Previous works on the TOA distribution are always associated with initial
wave function that has either positive or negative momentum but not both.
This is to ensure that the particle will appear at the arrival point after some
time. Under this framework, the identity resolution of the TOA operator
takes the form

I =

∫

+∞

−∞

dτ
(
∣

∣τX+ 〉〈 τX+
∣

∣+
∣

∣τX− 〉〈 τX−
∣

∣

)

(8)

and is physically interpreted that the particle will arrive sooner or later [9,
23, 24]. However, nothing in the formulation of the TOA operator restricts
us in choosing our initial state.

Let 〈p|ψ0〉 =
[

ψ+(p)e
ipq+/~ − ψ−(p)e

ipq
−
/~
]

/
√
2 be our initial antisym-

metric state where ψ+(p) and ψ−(p) are functions with compact support
in the positive and negative momentum values respectively with ψ−(−p) =
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ψ+(p). If we evaluate 〈X | ÛK
τ |ψ0 〉 and set X = −(q+ + q−)/2, we will ob-

tain ψ(X, τ) = 0 for all time τ . A vanishing wave function implies the non
appearance of particle at that given point. We expect the TOA distribution
to exhibit the same result at X = −(q+ + q−)/2. However, if we evaluate
Πψ0

(X, τ) using this antisymmetric initial state, we will get a non zero finite
probability value. This is explicitly illustrated in Figure 4 where the horizon-
tal dark line corresponding to fixed value of q, i.e. |ψ(q = 0, τ)|2 = 0 in Fig.
4(a), are in fact not dark in Fig.4(b) for Πψ0

(X = 0, τ). The observed inter-
ference in the time-evolved position density did not manifest in the standard
TOA distribution. The suppression of the interference term in ψ(q, τ) is due
to the forced separation of the positive and negative momentum components
of ψ0(p) in (2).

3.3. Probability current and the time-evolved position density

The problem on the absence of interference in the standard TOA was
already recognized by Leavens in [25, 10]. He contends that the association of
arrivals from left or right with positive or negative momentum respectively is
not justified. In addition, for a particular antisymmetric initial state, Leavens
was able to show that the probability current |J(X, τ)| = (~/µ)Im(ψ̄∂qψ)|q=X
agrees with the vanishing of the wave function for all time τ . Such agreement
is observed directly when the initial state has a compact support in the
half momentum line (Fig.2 and Fig.3). Does this favor the proposed use
of probability current to calculate the TOA distribution over the standard
operator approach (see for example [11])? If the answer to this question is
in affirmative, then |J(X, τ)| should be able to reproduce the spatial and
temporal profile of |ψ(X, τ)|2 for any initial state.

It turns out that |ψ(X, τ)|2 does not always agree with |J(X, τ)| if we treat
the latter as a TOA distribution. This can be demonstrated by considering a
symmetric combination of ψ+(p) and ψ−(p) as an initial state. We will find
that the probability current vanishes for all τ at some X where |ψ(X, τ)|2 is
not necessarily equal to zero. In fact, the probability current vanishes atX =
−(q+ + q−)/2 for both the symmetric and antisymmetric initial states. The
vanishing of the current for the antisymmetric initial state is due to ψ(X, τ) =
0 while its vanishing for the symmetric case is due to ∂qψ(q, τ)|q=X = 0. This
should not be surprising since for both the symmetric and antisymmetric
combination of ψ+(p) and ψ−(p), the net flux of probability at X is always
zero. The symmetric case shows that the appearance of particle at a given
point does not necessarily require a non-vanishing current. This is further
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Figure 5: The time-evolved position distribution (a) and the probability current for differ-
ent arrival point (b). The initial state used is the symmetric ψ0(p) = N(ψ+(p) + ψ−(p)),

where ψ±(p) = e−(p±p0)
2/(4σ2

p
) and N is a normalization constant.

illustrated in Fig.5 where the peak of |ψ(q, t)|2 at q = 0 corresponds to the
zero probability current |J(X = 0, τ)|2 = 0 for all time τ . This disqualifies
|J(X, τ)| as a legitimate way of calculating the TOA distribution if we insist
that particle appearance is a necessary requirement for quantum arrival.

4. Revisiting the Confined Time of Arrival

We have seen that the link suggested by (6) and (7) breaks down when
the initial state has both positive and negative momentum components. If
the TOA distribution predicts a finite probability despite having a vanishing
time-evolved wave function, then either the standard quantum TOA oper-
ator is wrong or it measures a time associated with a more general arrival
phenomenon. The former poses a serious problem in the foundation of quan-
tum mechanics, i.e. do we have to put an ad hoc assumption (in addition to
the canonical commutation relation) whenever we quantize a classical observ-
able? On the other hand, the latter gives us an avenue for further exploration.
Some of the interesting questions that we can address are: What does the
standard TOA operator actually measures? What new phenomenon do we
get in quantizing a classical observable? The answers to these questions are
revealed in the dynamics of the CTOA operator.

The standard TOA operator is maximally symmetric but not self-adjoint.
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Though it is already sufficient in the construction of TOA distribution, it
will be innocuous if one proceed to construct a self-adjoint version of stan-
dard TOA operator. The issue of self-adjointness was addressed via spatial
confinement, i.e. confining the space into a segment [−l, l] and by impos-
ing the boundary condition ϕ(−l) = e−2iγϕ(l) for all ϕ(q) in the system’s
Hilbert space [15, 16]. The confined time of arrival (CTOA) operator for
the free particle case in position representation is a Fredholm integral op-
erator T̂γϕ(q) =

∫ l

−l
Tγ(q, q

′)ϕ(q′)dq′. The kernel is square integrable, i.e.
∫ l

−l

∫ l

−l
|Tγ(q, q′)|2 dqdq′ < ∞, which results into a compact operator T̂γ hav-

ing a complete set of eigenfunctions and discrete spectrum. It was shown in
[17] that the CTOA approaches the standard TOA distribution in (3) as the
confinement length is increased. This means that any observation that we
have in the confined case could be extended to the unconfined case.

In the limit of large confinement length, the CTOA operator eigenfunc-
tions become two-fold degenerate that are orthogonal to each other for a
given arrival time eigenvalue. Unlike the standard TOA, the degenerate
CTOA eigenfunctions are classified in terms of their parity about the arrival
point. The eigenfunctions with even parity are called non-nodal while those
with odd parity are referred to as nodal. These degenerate eigenfunctions
arise naturally without any prior assumption of where the particle is coming
from.

(a) non-nodal eigenfunction distribution (b) nodal eigenfunction distribution

Figure 6: Time-evolved distribution of the non-nodal 6(a) and the nodal 6(b) eigenfunc-
tions of the free CTOA operator.

One noticeable feature of the CTOA operator eigenfunctions is their uni-
tary dynamics. In Fig.6, both the evolution of the nodal and the non-nodal
eigenfunctions exhibit unitary collapse, i.e. their position uncertainty be-
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comes a minimum at a time equal to the CTOA eigenvalue [15, 16]. In
contrast to the evolution of the standard TOA eigenfunctions in Fig.1, two
different dynamics are observed in Fig.6. The non-nodal eigenfunctions ex-
hibit the same behavior as that of Fig.1, where it becomes a distribution
with a singular support at the arrival point at a time equal to the CTOA
eigenvalue. Such unitary collapse is amenable to particle appearance in-
terpretation. It follows that the overlap of the initial state with one of the
CTOA non-nodal eigenstate gives the probability amplitude that the particle
will appear at the arrival point with a minimum position uncertainty.

It would be mistaken, however, to extend the same interpretation to the
case of nodal dynamics in Fig.6(b). The reason is that the nodal eigen-
function is zero at the arrival point for all time t despite having a minimum
position uncertainty at the eigenvalue time. So how do we interpret the nodal
eigenfunctions dynamics? This will be answered in the next section.

5. Quantum Arrival with Particle Appearance

Let us go back to the standard TOA operator that is defined in the entire
real line. We can construct a set of nodal and non-nodal eigenfunctions for
the standard TOA operator by superposing the result in (2) such that the
resulting function in position representation has a certain parity about the
arrival point. Note that the equal superposition of (2) is still an eigenfunction
of the standard TOA operator with the same eigenvalue. Specifically, if we
let φ̄(p) be the momentum representation of a function φ(q) with certain
parity about q = X , i.e. φ(X − q) = ±φ(X + q), then one can show that
eipX/~φ̄(p) is either odd or even about p = 0. For p 6= 0, the alternative set
of degenerate eigenfunctions are

〈

p| τXnon
〉

=

√

|p|
2µ

e−ipX/~√
2π~

eip
2τ/2µ~

〈

p| τXnod
〉

=

√

|p|
2µ

e−ipX/~√
2π~

eip
2τ/2µ~ · sgn(p)

(9)

where
∣

∣τXnon
〉

and
∣

∣τXnod
〉

are the non-nodal and the nodal eigenstates of the
standard TOA operator, respectively, with the same eigenvalue τ . If we
evolve (9) in time, we will get a similar behavior as that shown in Fig.6.
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Using the alternative set of eigenfunctions, the standard TOA distribution
becomes

Πψ0
(X, τ) =

∣

∣

〈

ψ0| τXnon
〉
∣

∣

2
+
∣

∣

〈

ψ0| τXnod
〉
∣

∣

2
. (10)

The non-nodal contribution correspond to particle appearance at the arrival
point and therefore, it should agree with the time-evolved position distribu-
tion. This can be verified by comparing the first term of (10) with |ψ(q, t)|2.
Similarly, the meaning of the nodal unitary collapse in Fig.6(b) can be inter-
preted by comparing the second term of (10) with |ψ(q, t)|2.
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Figure 7: Comparison of the non-nodal and nodal TOA distributions with the time-
evolved position density distributions. The initial state used is the antisymmetric ψ0(p) =

N(ψ+(p)− ψ−(p)), where ψ±(p) = e−(p±p0)
2/(4σ2

p
) and N is a normalization constant.

Figures 7(a) and 7(b) shows the non-nodal TOA distribution and the
time-evolved position distribution, respectively, for an anti-symmetric initial
state. Notice that the peaks in Fig.7(a) correspond to the peaks of Fig.7(b).
This supports the interpretation that the non-nodal contribution corresponds
to quantum arrival with particle appearance. We also compare the time-
evolved position distribution in Fig.7(b) with the nodal TOA distribution in
Fig.7(c). In contrast to the non-nodal case, the point where |ψ(q, τ)|2 = 0,
i.e. at q = 0 for all time τ , corresponds to the maximum of the nodal
distribution. This means that the nodal distribution is a maximum when
there is no particle appearance. Now, being one of the degenerate eigenstate
of the standard TOA operator, the nodal distribution implies that we have a
quantum arrival with no particle appearance. Consequently, the dynamics of
the degenerate eigenfunctions in Fig.6 correspond to two possible outcomes
of a quantum TOA measurement, i.e. the appearance or the non-appearance
of particle at the arrival point. This generalizes our notion of quantum
arrival, i.e. the particle is not compelled to appear at the arrival point. In
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Figure 8: The non-nodal time of arrival distributions for the symmetric (a) and antisym-

metric (b) initial state. The profiles of
∣

∣

〈

ψ0| τXnon
〉∣

∣

2
is compared to |ψ(q, t)|2 for the fixed

time and position for the symmetric case (c and e) and antisymmetric case (d and f).

particular, we can define the quantum arrival to be a phenomenon where the
position uncertainty becomes a minimum at the arrival point. Both of the
possibilities depicted in Fig.6 agree with this definition. Furthermore, given
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an initial state |ψ0 〉, we can assign a probability to each of the quantum
arrival outcomes. If we multiply (10) with dτ , then we can write

P{X,τ}(arrive) = P{X,τ}(arrive ∩ appear)

+ P{X,τ}(arrive ∩ not appear)
(11)

where P{X,τ}(arrive) gives the probability that the particle will quantum
mechanically arrive at X in a small time interval containing τ . The proba-
bilities P{X,τ}(arrive ∩ appear) and P{X,τ}(arrive ∩ not appear) are the
respective joint probabilities that correspond to the two possible outcomes
of a quantum TOA measurement.

If one is only interested in TOA measurement with particle detection,
then the relevant probability should come from the non-nodal eigenstates,
i.e.

P{X,τ}(arrive ∩ appear) =
∣

∣

〈

ψ0| τXnon
〉
∣

∣

2
dτ (12)

where
∣

∣

〈

ψ0| τXnon
〉
∣

∣

2
is the quantum TOA distribution associated with particle

appearance. This is further demonstrated in Fig.8 where the non-nodal TOA
distributions are calculated for two different initial states. Figures 8(c) and
8(e) shows the temporal and the spatial profile agreement between the non-
nodal TOA distribution and the time-evolved position distribution for the
symmetric initial state. Figures 8(d) and 8(f) shows how the temporal and
the spatial profile of the non-nodal TOA distribution matches with |ψ(q, t)|2
for the anti-symmetric initial state.

One can check that (10) is equivalent to (3) via the transformation
∣

∣τXnon
〉

=

(|τ+ 〉+ |τ−〉)/
√
2 and

∣

∣τXnod
〉

= (|τ+ 〉− |τ−〉)/
√
2. However, the terms that

appear in each distribution describe different events. Both terms in eq.3 cor-
respond to particle appearance with minimum position uncertainty at the
arrival point as shown in Fig.1, one is coming from the left and the other is
coming from the right. In eq.10, the first and second term corresponds to
particle appearance and non-appearance, respectively, both with minimum
position uncertainty at the arrival point (Fig.6). The two sets of degenerate
eigenfunctions of the standard TOA has a repercussions in our understanding
of temporal quantization. It turns out that the two set of TOA eigenfunc-
tions, i.e. the right/left and nodal/non-nodal, correspond to the outcomes
of the two-slit experiment in one dimension. This will be the subject of the
next section.
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6. TOA eigenfunctions and the two-slit experiment

The arrival set-up that we are considering so far is similar to the two-
slit experiment with two possible paths, i.e. particle can either be coming
from the left or the right with respect to the arrival point. If we know
which path the particle came from, then the resulting pattern on the screen
is a characteristic of a particle. This is similar to the behavior of the right
and left moving eigenstates of the standard TOA operator. Either of these
eigenstates guarantee a particle appearance at the arrival point as illustrated
in Fig.1. However, if we have no prior knowledge of the particle’s path, then
the pattern on the screen exhibit a wave-like nature, i.e. we can either have
a destructive or a constructive interference. Particle appearance is no longer
guaranteed. This is similar to the nodal and the non-nodal eigenstates of the
TOA operator where particle appearance is only possible for the non-nodal
case as shown in Fig.6. It turns out that if we treat the two-slit experiment
as a TOA measurement, then knowing the particle’s path collapses the initial
state into either the left/right moving eigenstates or into nodal/non-nodal
eigenstates of the TOA operator.

The momentum distribution of the initial state determines the set of
eigenfunctions that will come into play in a TOA measurement. If the initial
state has a compact support in the half momentum line, then the initial state
can only collapse into either the right or left moving eigenfunctions of the
standard TOA operator. Otherwise, if the momentum support of the initial
state has a positive and negative contributions then the state can collapse into
either the non-nodal or the nodal TOA eigenstates. The former always give
rise to particle appearance while the latter can result into either appearance
(constructive interference) or non-appearance (destructive interference) of
the particle at the arrival point. Our knowledge of the initial state reflects
our knowledge of the particle’s path at least in the one-dimensional case.

We now go back to one of the questions that we raised earlier, i.e. what
do we get in quantizing the classical TOA? It turns out that the quantization
of the classical TOA gives us (using the words of Feynman) a “phenomenon
which is impossible, absolutely impossible to explain in any classical way”
[27], which is the two-path quantum arrival. This arrival phenomenon comes
naturally by implicitly imposing the position-momentum commutation re-
lation in the construction of a TOA operator. The result of the two-path
experiment emerged as a consequence of TOA measurement and gives a di-
rect connection between the experiment outcomes based on our knowledge
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of the path and the position-momentum commutation relation.

7. Final comment

The original introduction of the standard TOA operator and most of its
variants draw some controversies. One notable criticism is due to Mielnik
and Torres-Vega in [19]. They raised several fundamental questions on the
construction of time operator within the standard framework of quantum
mechanics. We have detected at least two major conceptual challenges that
we believe can now be addressed using the generalized meaning of quantum
arrival event. First is on the absence of interference in the standard TOA
distribution. The second is on the role of a waiting detector on the free
evolution of the initial wave function prior to particle appearance. We will
devote this last section in addressing these problems.

The first problem will only persists if one hold on to the old notion that
particle detection is synonymous with quantum arrival. We have shown that
one can extract the interference of the wave function’s free evolution from the
standard TOA distribution. One, however, has to generalize the definition
of a quantum arrival event, i.e. it is an event where the position uncertainty
is a minimum in the neighborhood of the arrival point. This quantum event
is further classified into two possible outcomes, i.e. one correspond to parti-
cle detection while the other corresponds to particle non-detection. Both of
which are a result of the collapse of the initial wave function into the nodal
and the non-nodal eigenstates of the standard TOA operator. The inter-
ference that we see in the wave function’s evolution correspond only to the
quantum arrival with particle appearance which is contained in the standard
TOA distribution. The interesting feature of the standard TOA distribution
is that it contains the null result of an arrival measurement, signifying that
there is also a temporal collapse even if we have a non-detection.

The second question can be addresed by generalizing the interpretation
made in [12]. We will consider two different measurement schemes. The first
one is we prepared the system initially, i.e. the particle and the detector,
with an absolute intention to measure the particle’s arrival. Without loss
of generality, we will assume that the particle’s initial wave function has a
positive momentum support. Note that the particle will only be detected
if its wave function evolves unitarily to become a function with a singular
support at the arrival point for some time t = τ . This will only happen if the
particle is in one of the standard TOA operator eigenstates at time t = 0.
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This implies that the initial state must collapse into one of the eigenfunctions
of the standard TOA operator right after the preparation. The collapse will
be followed by the free unitary evolution of the TOA operator eigenfunction
until it becomes a wave function with a localized support in the neighborhood
of the arrival point. If the localized wave function is non-vanishing at the
arrival point, then we have a particle detection and the arrival time can
recorded. Thus, the effect of a waiting detector is to collapse the initial state
into one of the TOA eigenfunctions right after the preparation and that the
particle detection is a consequence of the eigenfunction’s unitary evolution.

Consider now the second mesurement scheme. We start with the same
arrival time measurement set-up but decide to defer the TOA measurement.
One might argue that our previous interpretation is incompatible with the
second set-up for we expect to see a distribution (of the other non-TOA
observable) that agrees with the time-evolved wave function. This means that
the initial wave function should not collapse into one of the standard TOA
eigenfunctions and just proceed to evolve unitarily. However, this apparent
paradox does not exist because quantum mechanics is inherently non-local
in time [22, 21, 20]. This means that the collapse into one of the TOA
eigenfunctions right after the preparation (when a TOA measurement is to
be made) and the Schrödinger’s evolution of the initial wave function right
after the preparation (when some other measurement is to be made) are two
mutually exclusive potentialities that are simultaneously true for the system.
Which possibility will be realized depends on the decision that we do to
the system at the moment. We refer the reader to [12] for a more detailed
explanation.

8. Conclusion

Our analysis shows that particle detection or appearance in a TOA mea-
surement is just a special case of a more general quantum TOA phenomena.
The quantization of the classical TOA expression, which we always asso-
ciate with particle appearance, gives us an operator with eigenfunctions that
evolve unitarily into a distribution with minimum position uncertainty. The
state of minimum position uncertainty does not necessary imply a particle
appearance for there are also state with the same feature that are vanishing
at the arrival point. Thus, if we are going to restrict ourselves to parti-
cle detection as a requirement of arrival then we should only consider the
non-nodal eigenstates of the TOA operator.
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Our insight here is restricted only to the free-case where the parity of
the standard TOA eigenfunctions plays an important role in qualifying the
two possible outcomes of a quantum TOA measurement. Nevertheless, one
can extend our analysis to the interacting case since previous works on the
CTOA reveals a similar nodal and non-nodal unitary collapse [28].
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